the Definitive Difference

between experiments and correlational studies

- Experiment (strict)
 must have at least one manipulated variable (IV)
- Correlational Study all of the variables are measured
 - although one is treated as the "predicted" variable
 - the others are treated as the "predictor" variables
- the difference is important for two reasons
 - different methods of analysis
 - different issues for interpretation

Directionality (of correlations)

- assume there's a correlation between X and Y e.g.,
- it could be that X causes Y

$$X \rightarrow Y$$

but it could also be that Y causes X

$$Y \rightarrow X$$

this is the "directionality problem"
 the opposite explanation to the "preferred" causal story is often called "reversed causation"

Third Variables (causing correlations)

- assume there's a correlation between X and Y e.g.,
- it could be that X causes Y $X \rightarrow Y$
- it could be that Y causes $X Y \rightarrow X$
- but it could also be that some third variable, Z ...
 e.g.,
 - ... causes both X and Y

Directionality (of correlations)

If X causes Y

then X1 should predict Y2 better than Y1 predicts X2 which means $r^2_{X1Y2} > r^2_{Y1X2}$

Directionality (of correlations)

If Y causes X

then Y1 should predict X2 better than X1 predicts Y2 which means $r^2_{Y_1X_2} > r^2_{X_1Y_2}$

Third Variables (causing correlations)

How do you test whether a correlation is caused by a third variable?

answer:

OK, how do you test whether a correlation is caused by a particular third variable?

answer:

note: the new value is called a "partial correlation" (partial correlation between X & Y with respect to Z)

Third Variables (causing correlations)

- If the partial correlation (btwn X and Y with respect to Z)
 is as strong as the original correlation,
 then the third variable is not the cause of the XY correl
- If the partial correlation is smaller than the original but still different from zero,
 then the third variable is not the *only* cause
- If the partial correlation is now zero,
 then the third variable (or something related to it) is likely the entire cause of the original correlation and the correlation between X and Y is spurious